tropic stresses and isotropic strains. This has also been observed for Ag-Cd (Sen Gupta & Quader, 1966) and for Ag-In and Ag-Sn alloys (Adler & Wagner, 1962). Fig.4 shows the variation of r.m.s. strains as a function of distance L normal to the reflecting planes for the Ag-5·35 Sb alloy, and the same general behaviour was shown by all the specimens and by several f.c.c. alloys of silver and copper. The rapid decrease with increasing L indicates the inhomogeneity of strains and the trend of the curves at higher L is quite consistent with the fact that owing to long range interactions of stresses around a dislocation, the positive and negative stresses balance at some average distance away from the source of stress reaching an asymptotic value.

The author is grateful to Prof. B.N.Srivastava, D.Sc., F.N.I., for his continued interest in the work and to the Council for Scientific and Industrial Research (New Delhi) for financial assistance.

References

ADLER, R. P. I. & WAGNER, C. N. J. (1962). J. Appl. Phys. 33, 3451.

ART, A., GEVERS, R. & AMELINCKX, S. (1964). Proc. European Regional Conf. Electron Microscopy (Prague), p. 223. COHEN, J. B. & WAGNER, C. N. J. (1962). J. Appl. Phys. 33, 2073.

DAVIES, R. G. & CAHN, R. W. (1962). Acta Metallurg. 10, 621.

- FOLEY, J. H., CAHN, R. W. & RAYNOR, G. V. (1963). Acta Metallurg. 11, 355.
- GOSWAMI, K. N., SEN GUPTA, S. P. & QUADER, M. A. (1966). Acta Cryst. 21, 243.
- PATERSON, M. S. (1952). J. Appl. Phys. 23, 805.
- SASTRY, D. H., RAMA RAO, P. & ANANTHARAMAN, T. R. (1965). Phys. Status Solidi, 8, K95.
- SEN GUPTA, S. P. & QUADER, M. A. (1966). Acta Cryst. 20, 798.
- SMALLMAN, R. E. & WESTMACOTT, K. H. (1957). *Phil. Mag.* 2, 669.
- STOKES, A. R. (1948). Proc. Phys. Soc. B, 61, 382.
- VASSAMILLET, L. F. (1961). J. Appl. Phys. 32, 778.
- VASSAMILLET, L. F. & MASSALSKI, T. B. (1964). J. Appl. Phys. 35, 2629.
- WAGNER, C. N. J. (1957). Acta Metallurg. 5, 427.
- WAGNER, C. N. J. & AQUA, E. N. (1963). Advanc. X-ray Analysis, 7, 46.
- WAGNER, C. N. J. & HELION, J. C. (1965). J. Appl. Phys. 36, 2830.
- WILLIS, B. T. M. (1959). Acta Cryst. 12, 683.
- WARREN, B. E. (1959). Progr. Metal Phys. 8, 147.
- WARREN, B. E. (1961). J. Appl. Phys. 32, 2428.
- WARREN, B. E. & WAREKOIS, E. P. (1955). Acta Metallurg. 3, 473.

Acta Cryst. (1967). 23, 248

The Crystal and Molecular Structure of Bis(hydrazinecarboxylato-N', O)manganese(II) Dihydrate

BY A. BRAIBANTI, A. TIRIPICCHIO, A. M. MANOTTI LANFREDI AND M. CAMELLINI

Istituto di Chimica generale, Università di Parma, Italy

(Received 26 October 1966)

The crystals of bis(hydrazinecarboxylato-N',O)manganese(II) dihydrate, Mn(II)(N'H₂-NH-COO)₂. 2H₂O, are orthorhombic, space group *Pba2*. The structure, determined from three-dimensional data, consists of chains formed by two types of *trans, cis, cis*-octahedral chelates, bound together in the chain by bridging hydrazinecarboxylato groups. Some water molecules are coordinated to the metal and some are water of crystallization. Four corners of the coordination octahedra of the first type are occupied by hydrazinecarboxylato chelate groups and two by oxygen atoms of bridging hydrazinecarboxylato groups. The complexes of the second type have the same geometrical arrangement of donor atoms as the complexes of the first type except that two water molecules replace the bridging groups. Some of the hydrazinecarboxylato groups behave as tridentate (chelate and bridging) ligands and some as bidentate chelate ligands. The complexes can be compared with octahedral complexes of the same and of different stereochemical arrangements formed by hydrazinecarboxylic acid. The chains of complexes are held together in the crystal by strong hydrogen bonds either direct chain-to-chain or *via* water of crystallization.

Introduction

Determinations of the crystal structures of compounds formed by hydrazinecarboxylic acid, $N'H_2$ -NH-COOH (hycH) with bivalent metals (Ferrari, Braibanti, Bi-

gliardi & Lanfredi, 1965; Braibanti, Manotti Lanfredi & Tiripicchio, 1966; Braibanti, Bigliardi, Manotti Lanfredi & Tiripicchio, 1966; Braibanti, Tiripicchio, Manotti Lanfredi & Bigoli, 1966) have shown that this ligand invariably gives origin to chelates. The complexes which have been studied are of types A, B and C shown in Fig. 1. They are octahedral and can contain either three or two hyc's.

The crystal structure of the compound bis(hydrazinecarboxylato-N', O)manganese(II) dihydrate,

$$Mn(hyc)_2.2H_2O$$
,

has now been investigated.

Experimental

Crystals were prepared by evaporation of an aqueous solution of hydrazine hydrate and manganese(II) chloride into which carbon dioxide had been bubbled for one hour or more. The crystals are colourless, thick plates, very stable at room temperature and show piezoelectric effects. The composition has been determined by chemical analysis.

Crystal data

Compound: bis(hydrazinecarboxylato-N', O)manganese(II) dihydrate,

Mn(II)(N'H2-NH-COO)2.2H2O, F.W. 241.074

Crystal habit: thick plates Crystal class: orthorhombic, pyramidal Unit cell (Cu K α radiation: $\lambda = 1.5418$ Å): $a = 11.052 \pm 0.010, b = 9.862 \pm 0.020, c = 7.847 \pm 0.005 \text{ Å}$ $U = 855 \cdot 3 \text{ Å}^3$, Z = 4 stoichiometric units $D_m = 1.893 \text{ g.cm}^{-3}, D_x = 1.872 \text{ g.cm}^{-3}$ $\mu = 135.8 \text{ cm}^{-1}$ (Cu Ka) Reflexions: 0kl only if k = 2n, h0l only if h = 2nSpace group: Pba2 (C_{2v}^8 , no. 32), from systematic extinctions and piezoelectric observations.

The photographs for intensity measurements were taken in an integrating Weissenberg camera applying the multiple film technique. The intensities of reflexions hk0, hk1, ..., hk6 and h0l were measured by a microdensitometer and the usual corrections were applied. Absorption corrections were applied as for cylindrical specimens ($\mu R = 2.41$). Atomic form factors were calculated by Forsyth & Wells's (1959) method with the improved constants given by Moore (1963). All calculations were performed on the Olivetti Elea 6001/S of the Centro Calcolo Elettronico of the University of Parma.

Determination of the structure

The three-dimensional Patterson function P(UVW)suggested that the manganese atoms are distributed over the two non-equivalent crystallographic positions: (a) 00z; $\frac{11}{2}z$ and (b) $0\frac{1}{2}z$; $\frac{1}{2}0z$. The light atom positions were found by means of several successive Fourier syntheses. The structure was refined by differential syntheses and the anisotropic thermal parameters were refined by the method of Nardelli & Fava (1960). $(R_{hkl} = 13.2\%)$, observed reflexions only). The final results are reported in Tables 1-4.

Fable	1.	Final	atom	ic	coordinates
	w	ith e.s	.d.'s (×	104)

	X/a	Y/b	Z/c
Mn(D)	0000 (0)	5000 (0)	6771 (4)
O(1D)	0058 (12)	2840 (12)	6458 (19)
C(2D)	0945 (15)	2302 (15)	5572 (25)
N(3D)	1625 (13)	3214 (15)	4692 (24)
N(4D)	1471 (14)	4643 (13)	4958 (20)
O(5D)	1054 (12)	1110 (11)	5245 (19)
$H_2O(6D)$	1315 (12)	4726 (15)	8870 (21)
Mn(C)	0000 (0)	0000 (0)	3230 (4)
O(1 <i>C</i>)	-1179 (13)	1697 (13)	2883 (16)
C(2C)	-0872 (14)	2657 (15)	1799 (29)
N(3C)	0257 (14)	2390 (22)	0913 (30)
N(4C)	0875 (12)	1214 (16)	1212 (22)
O(5C)	-1429 (15)	3689 (16)	1693 (23)
$H_2O(7)$	3668 (12)	4326 (14)	7892 (21)

Discussion of the structure

The structure, represented in Fig.2, consists of two sets of complexes corresponding to the two sets of crystallographically non-equivalent metal atoms. Half the water molecules are directly coordinated to the metal and the other half appear as water of crystallization.

The two sets of complexes are of types C and D(Fig. 3); both are trans, cis, cis-complexes strictly related to the complexes C found in the structure of $Cd(hyc)_2$ (Braibanti, Tiripicchio, Manotti Lanfredi & Bigoli, 1966) where they are the only complexes present; in the

Fig.1. Types of complex found in compounds of hyc. A: trans-[M(II)(N₂H₄)₂]hyc₂. B:cis-[M(II)hyc₃]⁻. C: trans,cis,cis-[Cdhyc₂ (O-hyc)₂].

latter they are bound in layers through tridentate hyc groups, which form chelates and at the same time bridge two complexes. In the manganese compound, however, the layer structure becomes a chain structure, each chain being formed by alternate C and Dcomplexes.

The D complexes possess the same geometrical arrangement trans, cis, cis as C complexes but the two

positions occupied by O-hyc of adjacent chains are

taken by two water molecules. Comparisons can also be made with other octahedral complexes A and B to see how many different arrangements can be found with this ligand.

The main bond lengths in the complexes are quoted in Table 5 and the corresponding bond angles in Table 6. The complex C is drawn in perspective in Fig.4 and the complex D in Fig. 5; the chelate rings formed by the atoms

are there easily recognized.

In both complexes the Mn–O(1) bonds within the same ring are shorter than the Mn-N(4) bonds and this is probably due to the electrostatic attraction of the negatively charged oxygen atom. Such differences between metal-oxygen and metal-nitrogen bonds have not been observed in the complexes of neutral semicarbazide molecules (Nardelli, Fava Gasparri, Boldrini & Giraldi Battistini, 1965) where the bonds in each of the two pairs Cu–O 1.97, Cu–N 1.99 Å and Zn–O 2.06, Zn-N 2.07 Å are equal. Furthermore, in the complex D, Mn(D)-OH₂(6D), 2.213 Å, formed with an uncharged water molecule, is longer than Mn(D)-O(1D), 2.145 Å, and in the complex C, Mn(C)-O(5D),

2.248 Å, formed with the C=O group of an adjacent hyc, is also longer than Mn(C)-O(1C), 2.138 Å.

The nitrogen-nitrogen bonds of the hydrazine radical, N(3C)–N(4C), 1.366 Å and N(3D)–N(4D), 1.435 Å are shorter than the corresponding distance in the N₂H₄ molecule [N–N, 1·47 Å; Ferrari, Braibanti, Bigliardi & Lanfredi (1965)].

The carbon-oxygen bonds C(2C)-O(1C), 1.317 Å and C(2D)-O(1D), 1.314 Å are longer than the bonds C(2C)-O(5C), 1·192 Å and C(2D)-O(5D), 1·209 Å in the hydrazine radical of C and D respectively and cor-

Fig. 2. Clinographic projection of the structure of $Mn(II)hyc_2 \cdot 2H_2O$.

Table 2. Aniso	tropic thermal	parameters ((Å2)
----------------	----------------	--------------	-----	---

	B_{11}	B ₂₂	B_{33}	B_{12}	B ₁₃	B ₂₃
Mn(D)	2.318	2.205	2.599	-0.064	0	0
O(1D)	2.562	2.545	1.993	-0.359	0.003	0.020
C(2D)	1.015	1.654	1.630	-1.060	-0.005	0.166
N(3D)	1.115	1.334	1.488	-0.155	0.318	-0.139
N(4D)	1.848	0.710	1.298	-0.522	-0.647	-0.784
O(5D)	1.982	1.868	2.178	-0.157	-0.271	-0.086
$H_2O(6D)$	1.763	1.735	1.917	0.425	0.075	0.359
Mn(C)	2.286	2.199	2.561	0.136	0	0
O(1C)	1.810	2.419	2.176	0.722	0.264	0.447
C(2C)	1.632	1.426	2.308	-0.401	-0.100	0.310
N(3 <i>C</i>)	0.239	2.098	2.840	0.161	0.111	1.126
N(4C)	1.048	2.593	1.642	-0.039	0.191	-0.175
O(5C)	2.859	2.880	3.558	-0.451	0.630	-0.515
H ₂ O(7)	2.076	2.859	3.941	-0.182	0∙540	-0.603
	A	verage and a	maximum shift	in the last cyc	cle:	
	Mn		$ \Delta_{\rm av} = 0.102$	$ \Delta_{\rm max} $	=0.271	

 $|\Delta_{av}| = 0.083$

 $|\Delta_{\rm max}| = 0.353$

Light atoms:

Table 3. Observed and calculated structure factors

Y	2	1	10 2 9	10 <u>7</u> 2	h	k	1	10 2 9	10 Z g	ħ	F	1	10 2 0	10 <u>7</u> 0	Þ	¥	1	10 <u>7</u> 0	10 <u>P</u> 2	Þ	¥	1	10 <u>P</u>	10 <u>7</u> 2	<u>Þ</u>	¥	1	10 2 9	10 <u>7</u> 2	Þ	Ŧ	1	10 Z g	10 <u>7</u> 9
2 4 6 8 10 12	000000	000000	1015 469 579 699 338 311	1515 523 722 906 364 250	11 0 1 2	7 8 8	•	154 491 239 424	112 488 263 485	0 1 2 3 4 5	4 4 4 4	1 1 1 1 1	435 314 194 214 299 245	440 347 241 241 325 248	2 4 6 8 10 12	000000	2 2 2 2 2 2 2	783 496 298 332 289 217	806 511 282 342 248 160	012345	8 8 8 8 8	~ ~ ~ ~ ~ ~ ~	301 170 195 145	305 123 140 75 251 131	8 9 10 11 12	4 4 4 4	333	309 125 235 186	324 101 246 79 189	11 12 13	1 1 1 2	4	148 80 74	154 84 144 7
14 1 2 3 4 5	0	0 00000	201 192 282 215 310	151 49 165 240 186 318	34567890	888888888	0000000	203 295 155 191 151 238	250 303 135 106 115 176 34 234	6 7 8 9 10 11 12	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 1 1 1 1 1 1	221 197 205 154 173 183	214 128 157 109 105 49 163	14 1 2 3 4 5	0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	473 824 677 289	132 523 916 705 311	6 7 8 9 10	8 8 8 8	~ ~ ~ ~ ~ ~ ~	260	243 19 39 99 33	1234567	555555		209 270 220 157 211 197	188 290 255 116 231 218 17	12345678	2 2 2 2 2 2 2 2 2		223 111 105 165	209 53 108 58 163 45 70 37
678910 1112	1 1 1 1 1 1 1		235 259 162 211	242 265 66 166 28 110	11 1 2 3 4	8 9999	0000		21 121 43	1 2 3 4 5	55555	1 1 1 1 1 1 1	644 168 354 186	759 132 410 126	5 6 7 8 9 10 11	1 1 1 1 1 1	~~~~~~~~~~	260 423 240 147 138	291 465 51 247 104 176	2345678	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	~~~~~~~~~~~	278 295 220	295 111 275 54 296 115 194	8 9 10 11 12	55555		1 <u>32</u> 80	122 25 35 61 77	9 10 11 12	2 2 2 2 2 3		93 83 64 283	78 48 79 47
13 14 0 1 2	1 1 2 2 2 2 2	000	<u>544</u>	80 165 408 66 204	5 6 7 8 9 10	9999999	000000		43 48 61 24 34 89	6 7 8 9 10 11	5555555	1 1 1 1 1 1	466 201 275 172	107 542 183 311 160 92	13 14 0 1 2	1 1 2 2 2	22 222	900 601	121 86 872 551 581	9	9 10 10 10	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	79 	94 94 89 136	0123456	666666		490 234 440 181 246 195	530 265 474 154 253 219 132	2 3 4 5 6 7 8		4 4 4 4 4 4	114 464 101 411 100 259	110 558 108 458 54 239 92
3456789	2222222		229 176 227 478 150 405 229	223 227 281 578 131 464	012345	10 10 10 10	000000	244 201 267 186 270	156 143 229 175 262	13 0 1 2	5 6666	1 1 1	256 172	92 346 34 210	3456789	~~~~~~~~~~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	515 445 252 297 262 256	557 466 226 342 298 231	5 6 7 8	10 10 10 10	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	142	182 64 137 73 64	7 8 9 10 11	6 6 6 6 6		259 148 248	33 273 128 261 69	9 10 11 12	3333	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	175 96 69 274	185 65 126 56 282
10 11 12 13 14	2 2 2 2 2 2 2	00000		75 20 51 94 229	6 7 8 1 2	10 10 10	0000 00	208	165 77 143 46	34 56 78 90		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	291 267 151	277 18 273 82 141 81	10 11 12 13	2222	2222	160 164 176	158 154 127 18	1 2 3 4 5 6	11 11 11 11 11	2 2 2 2 2 2 2	160 159 108	163 43 149 33 90 36	1234567	7 7 7 7 7 7 7		163 186 125 174 169	169 171 98 139 124 102	1234567	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	105 230 107 166 164	65 230 57 154 44 163 86
1234567	3333	000000	277 240 172 406 136	263 101 183 122 445 129	34567	11 71 11 11	00000	155	38 21 39 149 52	11 12 1 2	6 6 7 7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u> </u>	48 79 417 70 205	2345678		2222222	320 531 187 350 243 172 216	278 598 145 400 237 113	0 1 2 3 4	12 12 12 12 12	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	143 96	156 39 85 19 31	8 9 10 11	7 7 7 7		115	133 61 61 53	8 9 10 11 12	4 4 4 4	4 4 4 4	165	175 40 97 39 27
8 9 10 11 12 13		000000	240 194 178	261 170 128 33 19 93	01234	12 12 12 12 12	00000	181 205 152	104 78 156 66 182	4 5 6 7 8 9 10	7777777777777	1 1 1 1 1	155 221 260 233 164	120 159 118 230 185 202 91	9 10 11 12 13	3333	2 2 2 2 2 2 2	221 176 238 155	170 156 247 81 129	0 2 4 6 8	00000	3333	301 878 1289 460 353 322	305 825 1365 529 329 351	1234567	888888888		177 217 186 306 297 112	148 202 150 332 82 337 133	1234567	5555555	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	446 401 124 329 234	5:1 58 419 11* 341 56 276
0 1 2 3 4 5	4 4 4 4 4	000000	750 143 793 143 788	788 121 913 116 892 102	0 2 4 6 8 10 12	0000000	1 1 1 1 1 1 1	534 250 290 295 245 187 247	803 267 261 385 238 189 194	11 0 1 2 3	7 8 8 8 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	204	138 159 104 154 69	0123456	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	281 478 500	255 58 470 26 523 7P 146	12	C	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	164 249 354	54 233 350 37	8910	8 8 9 9 9	333	···· 	145 15 57 125 37	8 9 10	5555	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	128 209 102 150	108 221 82 193
6 7 8 9 10 11 12	4 4 4 4 4 4 4	0000000	548 351 141 282 264	595 53 368 98 249 7 185	14 1 2 3 4	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	709 536 757 173	61 852 639 870 145	4 5 6 7 8 9 10	8 8 8 8 8 8	1 1 1 1 1	196	148 106 16 51 105 19 134	7 8 9 10 11 12 13	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	164 257 133	48 127 49 233 60 145 58	5 6 7 3 9 10 11	* * *		174 145 154 135 163	180 108 182 111 107 41 135	3456789	99999999			34 29 23 60 45 27 58	. 2 3 4 5 6 7	6666666	4 4 4 4	+0C 96 102	50 42 26 57 71 77 78
13 1 2 3 4	4 5 5 5 5 5	• • • • •	442 187 167	68 393 207 130 23	5 6 7 8 9 10 11	1 1 1 1 1	1 1 1 1 1 1	499 251 335 170 343 256	548 295 340 105 389 98 262	11 1 2 3 4	8 9 9 9 9	1 1 1 1	234 173 350	36 270 119 359 35	- - - - - - - - - - - - - - - - - - -	55555	2 2 2 2 2 2 2	459 131 587 359	5*4 68 650 68 337	12 13 C 1 2	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	3	393 183 574	59 40 345 151 545	0 1 2 3 4,	10 10 10 10	3 3 3 3 3	258 230 219	269 66 222 70 185	9 10 11	6 6 6 6 7	4 4 4	95 72 214	65 77 62 15 217
5678910 11	5555555	0000000	203	72 70 101 167 34 194 42	12 13 14 0 1	1 1 1 2 2	1 1 1	206 575 323	25 155 48 573 317	5 6 7 8 9 10	99999999	1 1 1 7 7	347 235 133	329 96 215 33 113 37	6 7 8 9 10 11 12	5555555	2 2 2 2 2 2 2 2	236 178 235 289	95 164 154 273 57 260 29	34 50 78 9	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		286 540 270 242 108	305 605 92 276 200 109 74	567	10 10 10	333	<u>193</u>	27 193 63 97 101	2 3 4 5 6 7 8	7 7 7 7 7 7 7 7	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	238 219 211 129 197 93	263 213 59 245 132 219 93
12 13 0 1 2	55 666	00 000	391 381 230	27 76 418 430 254	2 3 4 5 6 7 8	~ ~ ~ ~ ~ ~ ~ ~ ~	1 1 1 1 1	370 173 562 21D 266 187 210	383 186 637 147 234 172 143	0 1 2 3 4 5	10 10 10 10 10	1 1 1 1 1	155 171 208 147	177 94 159 101 106 49	01234	6666	2 2 2 2 2 2	381 137 357 250	433 91 384 47 253	10 11 12 13	2222	3333	236	278 85 250 42 81	345	11 11 11 12 12	3		50 19 53 192 52	9 10 0 1 2	778888	4	67 48 198 100	106 58 238 58 75
3456789		0000000	277 272 254 438 137 330 182	279 294 318 487 77 301 124	9 10 11 12 13 14	2222222	1 1 1 1 1	162	66 81 124 93 27 47	6 7 8 1 2	10 10 10	1 1 1	227	75 50 101 191 24	5 6 7 8 10 11	666666	~ ~ ~ ~ ~ ~ ~ ~ ~	183 204	78 84 19 200 44 208 57	2345678			196 386 174 229 180	203 446 149 240 46 58 178	2 0 2 4 6	12 0 0 0	3	348 337 352 236	100 215 448 429 210	34 56 78 9	8 8 8 8 8 8 8 8 8 8 8 8 8 8	4 4 4 4	87 39 106 81 66	54 98 51 101 38 65 21
10 11 12 1 2	-6 6 6 7 7	000 00	145	92 43 104 5 37	1 2 3 4 5 6	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 1 1 1	480 236 390 204 471	533 219 428 167 531 72	3 4 5 6 7	11 11 11 11 11	1 1 1 1	134 	120 36 83 18 104	12 1 2 3 4	6 7 7 7 7	2 2 2 2 2 2	193 176 260 213	51 211 156 252 187	9 10 11 12 13	333		141	75 141 105 32 66	8 10 12 1 2	000	4 4 4	118 140 127 787 89	118 164 114 894 104	1 2 3 4 5	9 9 9 9 9 9 9	4 4 4 4	254 107 248 178	299 102 259 45 150
345678	- 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	000000	214 231 217	192 268 61 58 97 188	7 8 9 10 11 12		1 1 1 1 1	366 190 247 208 215	399 219 191 148 151 12	0 1 2 3 4	12 12 12 12 12	1 1 1 1		62 34 54 39 43	5 6 7 8 9 10	7 7 7 7 7 7 7	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	244 203 130 144	244 75 188 143 126 37 92	0123456	4 4 4 4	33333	665 215 551 197 390 163 380	690 171 573 194 477 107 423	3 4 5 6 7 8 9	1 1 1 1 1	4 4 4 4 4 4	257 211 260 435 119 282	250 249 290 68 498 91 316	6 7 8 0	9 9 9	4 4 4	122 85	22 149 5 56 46
9 10	77	0	_	24 58	• ۱	د	'	100	.00	0	٥	2	747	711	17	•	-			7	4	ŝ	176	112	1 10	1	4		91	2	10	Á		29

Table 3 (cont.)

¥	¥	1	10 <u>7</u> 0	10 2 _2	1	Ł	1	10 <u>7</u> 0	10 <u>7</u> 0	A	¥	1	10 <u>7</u> 0	10 <u>7</u> 2	Þ	¥	1	10 <u>7</u> 9	10 <u>P</u>	À	Ł	1	10 <u>7</u> 0	10 <u>7</u> 9	Þ	F	1	10 <u>7</u> 0	10 <u>7</u> 0	Þ	F	1	10 <u>7</u> 0	10 <u>7</u> g
3456	10 10 10	4	67 57 57	70 39 44 81	2 3 4 5	2 2 2 2 2	5555	309 216 233 175	285 201 200 165	10 11	4	5	Ξ	8 34	8 9	777	5 5	112	107 51	4 6 8	0000	6666	225 294 195	183 340 226	5 6 7	333	6666	160 162	168 56 170	345	6666	6666	103 219	64 244 75
1 2	11 11	4	80	84 41	6 7 8 9	2 2 2 2 2	5555	219 97 208	251 84 204 79	1 2 3 4	5555	5555	295 153 222	282 171 216 58	0 1 2 3	8 8 8	5555	225 130 194 111	243 133 217 . 95	1 2	1	6	256 118	240 90	9 10 11	333	666	Ξ	42 85 40	7 8 9	6 6 6	666	107	22 129 84
3 4	11	4	86	99 21	10 11 12	22	55	134 74	130 24 131	5 6 7 8	5555	5555	237 206 118	290 76 256 83	4 5 6 7	8 8 8	5555	159 134 139	193 - 133 - 113 - 64	3 4 5 6	1 1 1	6666	114 119 129	81 94 36 121	012	4	6 6 6	274 151 278	227 98 270	1 2 3	7 7 7	6 6 6	135 120	156 104 125
246	0000	7555	730 436 279 362	752 389 265 398	1 2 3	333	555	348 229 238	360 249 251	9 10 11	55	55	96	86 123 80	1	9	5	104	133 205	7 8 9 10	1 1 1	6666	110 121	145 83 130 71	3456	4 4 4	6666	126 286 175	80 323 56 209	4 5 6 7	7777	6666	Ξ	56 68 31 58
10 12	00	5	182 80	150 82	567	333	75555	244 181 214	266 215 234	012	6666	555	365 164 199	409 140 168	3456	9999	7555	101	115 157 32 51	•	2	6	388	345	7 8 9 10	4	6 6 6	135 94	23 128 12 132	8 0	7	6	182	184
1 2 3	1 1 1 1	5555	434 238 296 170	443 226 278 132	9 10 11		5555	149	159 26 56	34567	6666	5555	184 153	153 64 161	7	9 10	5	=	65	234	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	6666	300 149 256	304 97 264	1 2	5	6	137	120 90	234	8 8	0000	142 142	152 59 138
5678	1 1 1	5555	226	182 53 256 186	0	4	5	362 129	336 118	8 9 10	6 6 6	555	165 95	181 35 90	1 2 3 4	10 10 10	5555	110 85 84	62 111 85 77	6789	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6666	238 180	264 69 202 63	3 4 5 6 7	5555	6666		97 12 72	6 7	8	6	98	91 49 34
9 10 11 12	1 1 1	5555	170	177 8 176 55	2345	4 4 4 4	5555	283 283	243 96 289 73	1 2 3	7777	555	116 141 126	108 111 176	5	10 11	5	_	65 84	10 11	2 2	6	<u>99</u>	110 41	8 9 10	555	6 6 6	80	64 104 24	2 3 4 5	, 9 9 9 9 9	6666	67 58	34 96 46 94
0 1	2	5	427 262	408 240	6 7 8 9	4 4 4	5555	348	405 73 239 33	4 5 6 7	7 7 7 7	5 5 5 5 5	144	145 130 60 57	2	00	6	580 315	556 304	1 2 3 4	333	6 6 6	211 154 138	196 141 79 89	012	6 6 6	6 6	214 83 209	250 98 221	0 1 2	10 10 10	666	75 	136 53 157

Table 4. Atomic peak heights (e.Å⁻³), curvatures (e.Å⁻⁵) and e.s.d.'s

			$-A_{hh}$	$-A_{kk}$	$-A_{ll}$	Ank	Ani	Aki
$M_{\pi}(D)$	obs.	52.9	551	559	354	-5	0	0
Mn(D)) calc.	55.4	561	568	373	-2^{-2}	ŏ	ŏ
O(1 D)	Ì obs.	12.1	117	111	78	$-\overline{1}$	4	- 3
O(1D)) calc.	12.8	117	114	81	$-\overline{2}$	4	- 3
C(2D)	Ì obs.	9.3	96	90	58	-10^{-10}	-4	ŏ
C(2D)	calc.	9.8	96	94	61	-8	-4	-1
N(2D)	∫ obs.	11.5	117	112	71	7	5	5
N(3D)	calc.	11.9	116	111	75	7	3	6
N(4D)	obs.	11.3	104	100	69	-12	-6	-2
$\Pi(4D)$	calc.	11.4	105	101	71	-11	-6	-2
0(5D)	∫ obs.	12.8	116	129	74	1	-2	$-\overline{2}$
O(3D)	calc.	13.3	118	135	79	1	-1	-2
H-0(6D)	∫ obs.	12.7	117	97	76	-1	5	2
$\Pi_2 O(0D)$	calc.	13.1	120	97	80	-1	4	1
$M_{n}(C)$	∫ obs.	52.8	545	561	355	13	0	0
WIII(C)	calc.	55.3	557	569	371	10	0	Ō
O(1C)	∫ obs.	12.3	114	115	79	11	-4	- 8
0(10)	calc.	13.1	119	117	83	10	-2	-8
C(2C)	∫ obs.	9.6	102	98	55	-1	2	3
	calc.	9.8	102	97	57	-1	2	3
N(3C)	∫ obs.	10.3	104	84	55	9	-4	8
N(JC)	calc.	10.8	102	87	60	8	-3	8
N(4C)	∫ obs.	10.7	114	84	63	- 1	-3	-4
11(40)	calc.	11.0	116	88	65	0	-3	-5
O(5C)	∫ obs.	11.2	95	98	62	6	3	0
0(50)	calc.	11.5	99	96	65	8	-2	1
$H_{2}O(7)$	∫ obs.	11.3	108	95	63	- 3	-10	-2
1120(7)	l calc.	11.7	109	99	67	-2	-9	-2
e.s.d.		0.5	7	7	4	4	3	3

respondingly the form $-C^{"}$ seems to give the largest

0

contribution to the resonance bond state of the carboxylato group.

The analysis of the planarity (Table 7) shows that each chelate ring as a whole is non-planar. Some of the atoms, however, around Mn(C), namely O(1C), C(2C), N(3C) lie in the same plane as O(5C), while

N(4C) and Mn(C) are out of this plane. The same situation had been found also in complexes of type Cwith cadmium (Braibanti, Tiripicchio, Manotti Lanfredi & Bigoli, 1966), in complexes of type A (Ferrari, Braibanti, Bigliardi & Lanfredi, 1965), and in complexes of type B (Braibanti, Manotti Lanfredi & Tiripicchio, 1966). The metal atom, in particular, is always out of the plane. In the complex around Mn(D), the chelate ring is again non-planar but no group of four atoms lying in the same plane has been found. The chelate rings formed by semicarbazide with zinc and

Table 5. Bond lengths (with e.s.d.'s)

Mn(D) - O(1D)	2·145 ± 0·018 Å	Mn(C)-O(1C)	2·138 ± 0·014 Å
Mn(D) - N(4D)	2·189 0·016	Mn(C) - N(4C)	$2 \cdot 208 0 \cdot 016$
$Mn(D)-H_2O(6D)$	2.213 0.016	Mn(C) - O(5D)	2.248 0.014
O(1D) - C(2D)	1.314 0.022	O(1C) - C(2C)	1.317 0.023
C(2D) - N(3D)	1.360 0.023	C(2C) - N(3C)	1.452 0.025
N(3D) - N(4D)	1.435 0.023	N(3C) - N(4C)	1.366 0.026
C(2D) - O(5D)	1.209 0.019	C(2C) - O(5C)	1.192 0.023

Table 6. Bond angles with e.s.d.'s

$O(1D) - Mn(D) - H_2O(6D)$	$86.8 \pm 0.7^{\circ}$	O(1C) - Mn(C) - N(4C)	$75.6 \pm 0.5^{\circ}$
O(1D) - Mn(D) - N(4D)	75.2 0.6	N(4C) - Mn(C) - O(5D)	90.8 0.5
$O(1D) - Mn(D) - H_2O(6D)(\bar{x}, 1-y, z)$	103.1 0.7	O(1C) - Mn(C) - O(5D)	91.4 0.5
$O(1D) - Mn(D) - N(4D)$ ($\bar{x}, 1 - y, z$)	96.2 0.6	$O(5D) - Mn(C) - O(5D)(\bar{x}, \bar{y}, z)$	90.6 0.5
N(4D)Mn(D)-H ₂ O(6D)	88.6 0.6	$N(4C) - Mn(C) - N(4C)(\bar{x}, \bar{y}, z)$	88.4 0.6
$N(4D) - Mn(D) - N(4D)$ ($\bar{x}, 1 - y, z$)	98.9 0.6	$O(1C) - Mn(C) - O(5D) (\bar{x}, \bar{y}, z)$	98.9 0.5
$H_2O(6D)-Mn(D)-H_2O(6D)(\bar{x}, 1-y, z)$	83.8 0.6	$O(1C) - Mn(C) - N(4C) (\bar{x}, \bar{y}, z)$	93.8 0.5
Mn(D) - O(1D) - C(2D)	118.9 1.1	Mn(C)-O(1C)-C(2C)	119.2 1.1
O(1D) - C(2D) - N(3D)	114.4 1.4	O(1C) - C(2C) - N(3C)	113.6 1.5
$C(2D) \longrightarrow N(3D) - N(4D)$	120.7 1.5	C(2C) - N(3C) - N(4C)	120.1 1.8
N(3D) - N(4D) - Mn(D)	109.9 1.1	N(3C) - N(4C) - Mn(C)	111.4 1.2
O(1D) - C(2D) - O(5D)	125.4 1.6	O(1C) - C(2C) - O(5C)	121.7 1.8
O(5D) - C(2D) - N(3D)	118.7 1.7	O(5C) - C(2C) - N(3C)	124.4 1.9

Best plane	Complex D	Comple	ex C
through	N(3)C(2)O(1)O(5)	N(4)N(3)C(2)O(1)O(5)	N(3)C(2)O(1)O(5)
m_1	0.62730	0.52038	0.53336
m_2	-0.02884	0.43295	0.42530
m_3	0.77824	0.73603	0.73119
d	3.91903	1.70974	1.66617
(O(1)	-0.0158 Å	0·0019 Å	0·0048 Å
C(2)	0.0733	-0.0377	-0.0335
Δ { N(3)	-0.0185	-0.0142	0.0116
O(5)	-0.0168	0.0214	0.0102
[N(4)	(-0.0035)	0.0119	(0.0543)
$\Sigma (\Delta/\sigma_1)^2$	19.953	6.252	3.714
X95% ²	3.841	5.991	3.841
(N(4)	−0.0035 Å	0·0119 Å	0∙0543 Å
²¹ (Mn	0.0737	0.1558	0.1871

Table 7. Analysis of the planarity of the chelate rings

Equation of plane: $m_1 X + m_2 Y + m_3 Z = d$ $\sigma_{\perp} = [m_1^2 \sigma^2(X) + m_2^2 \sigma^2(Y) + m_3^2 \sigma^2(Z)]^{\ddagger}$ (Å).

Fig. 3. Types of complexes in the crystal structure of Mn(II)hyc₂.2H₂O. C: trans,cis,cis-[Mn(hyc)₂(O-hyc)₂]. D: trans,cis,cis-[Mn(hyc)₂(OH₂)₂].

Fig. 4. Complex of C type. Atoms O(5D) belong to hyc groups of complexes of D type.

copper (Nardelli, Fava Gasparri, Boldrini & Giraldi Battistini, 1965) are also non-planar with the metal atom lying out of the plane of the chelate ring. Again the metal atom is out of the plane in the copper(II) complex with hydroxyquinoline (Palenik, 1964*a*) and in the corresponding zinc compound (Palenik, 1964*b*). The absence of planarity indicates that the rings possess no 'aromatic' character.

Table 8. Hydrogen bonds (with e.s.d.'s)

3·045 + 0·024 Å
2.813 ± 0.021
3.005 ± 0.022
2.740 ± 0.020
2.739 ± 0.023
3.234 ± 0.026

The intermolecular distances (Table 8) indicate that the water molecule H₂O(7) forms rather strong hydrogen bonds, H₂O(7)...OH₂(6D) = 2.740 Å and H₂O(7) ...O(5D) = 2.739 Å, with two complexes belonging to different chains (Fig. 6). Other hydrogen bonds are formed either between different chains, N(3D)... O(1C) = 2.813 Å, which is particularly strong, and O(5C)...N(4C) = 3.005 Å or between complexes of the same chain, O(5C)...N(4D) = 3.045 Å. The network of hydrogen bonds is responsible for the stability of the crystals.

We wish to thank the Consiglio Nazionale delle Ricerche, Rome, for financial aid.

References

BRAIBANTI, A., BIGLIARDI, G., MANOTTI LANFREDI, A. M. & TIRIPICCHIO, A. (1966). Nature, Lond. 221, 1174.

Fig. 6. Interchain and intrachain hydrogen bonds.

- BRAIBANTI, A., MANOTTI LANFREDI, A. M. & TIRIPICCHIO, A. (1966). Z. Kristallogr. In the press.
- BRAIBANTI, A., TIRIPICCHIO, A., MANOTTI LANFREDI, A. M. & BIGOLI, F. (1966). Z. Kristallogr. In the press.
- FERRARI, A., BRAIBANTI, A., BIGLIARDI, G. & LANFREDI, A. M. (1965). Z. Kristallogr. 122, 259.
- FORSYTH, J. B. & Wells, M. (1959). Acta Cryst. 12, 412. MOORE, F. H. (1963). Acta Cryst. 16, 1169.
- NARDELLI, M. & FAVA, G. (1960). Ric. Sci. 30, 898.
- NARDELLI, M., FAVA GASPARRI, G., BOLDRINI, P. & GI-RALDI BATTISTINI, G. (1965). Acta Cryst. 19, 491.
- PALENIK, G. J. (1964a). Acta Cryst. 17, 687.
- PALENIK, G. J. (1964b). Acta Cryst. 17, 696.